2007
DOI: 10.1080/14445921.2007.11104222
|View full text |Cite
|
Sign up to set email alerts
|

Combining Geographic Information Systems and Regression Models to Generate Locational Value Residual Surfaces in the Assessment of Residential Property Values

Abstract: ABSTRACT

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2012
2012
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 20 publications
0
1
0
1
Order By: Relevance
“…In particular, our study is the first that applies GIS to model, construct and display of the neighbourhoodlevel HPI for reasons previously mentioned. Nevertheless, the past studies that have been conducted to use surface responses to analyse capital values or prices of properties form the basis for spatial price indexation (Hamid, 2007;LaRose, 1988;McCluskey et al, 1997). The basic principle of this indexation is mapping spatial changes of relative property prices over a geographic space to aid in spatial analyses and decision-making.…”
Section: Introductionmentioning
confidence: 99%
“…In particular, our study is the first that applies GIS to model, construct and display of the neighbourhoodlevel HPI for reasons previously mentioned. Nevertheless, the past studies that have been conducted to use surface responses to analyse capital values or prices of properties form the basis for spatial price indexation (Hamid, 2007;LaRose, 1988;McCluskey et al, 1997). The basic principle of this indexation is mapping spatial changes of relative property prices over a geographic space to aid in spatial analyses and decision-making.…”
Section: Introductionmentioning
confidence: 99%
“…A priori, variables como la zona ajardinada tienen una escasa vinculación con el precio (3%), algo que puede venir explicada inicialmente por la escasa representación en la muestra de las viviendas con esta característica. Debe señalarse que en esta matriz no aparece la variable antigüedad por ser categórica, pese a su previsible correlación significativa con el precio; ni tampoco ninguna de las variables ligadas a la ubicación, una de las características más referidas en la literatura (Pearson, 1991;Hamid, 2007;Kucklick y Müller, 2020).…”
Section: Figura 1 Diagrama De Barras De La Variable Antigüedadunclassified