Abstract:Deep reinforcement learning can match or exceed human performance in stable contexts, but with minor changes to the environment artificial networks, unlike humans, often cannot adapt. Humans rely on a combination of heuristics to simplify computational load and imagination to extend experiential learning to new and more challenging environments. Motivated by theories of the hierarchical organization of the human prefrontal networks, we have developed a model of hierarchical reinforcement learning that combines… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.