2020
DOI: 10.1016/j.ijmecsci.2020.105843
|View full text |Cite
|
Sign up to set email alerts
|

Combining multi-phase field simulation with neural network analysis to unravel thermomigration accelerated growth behavior of Cu6Sn5 IMC at cold side Cu–Sn interface

Abstract: Integration of data-driven approach with theory,computation and experiment.• Free energy density function introduced for thermomigration.• Heat of transport for Cu in Cu 6 Sn 5 phase determined using neural network analysis.• Cold side IMC grain growth modeled using multi-phase field method.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 36 publications
(18 citation statements)
references
References 55 publications
0
17
0
1
Order By: Relevance
“…In our work, best MSE and R values are obtained by using four hidden layers. The number of neurons in each hidden layer are (40,40,40,40), (20,20,10,20), (40,30,30,30), (40,40,40,40)…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…In our work, best MSE and R values are obtained by using four hidden layers. The number of neurons in each hidden layer are (40,40,40,40), (20,20,10,20), (40,30,30,30), (40,40,40,40)…”
Section: Resultsmentioning
confidence: 99%
“…Artificial neural network model [27][28][29][30][31][32][33] is a machine learning technique most popular in high-energy physics community. In the last decade important physics results have been separated utilizing this model.…”
Section: B Artificial Neural Network(ann) Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…In recent years, machine learning and data analytics have been recognized as techniques for the real-time quality monitoring of material processing experiments. For instance, the convolutional neural network (CNN) model was developed to detect Cu 6 Sn 5 IMC and bubbles in liquid solder [25]; the multi-phase field model was combined with machine learning to assess the growth of Cu 6 Sn 5 during thermomigration and electromigration process [26,27]; and finite element analysis and machine learning were utilized to predict the morphology of IMC in an Sn-x Ag-y Cu/Cu (SAC/Cu) system [28]. In a word, data-driven science has become a powerful tool to predict the growth behavior of IMC.…”
Section: Introductionmentioning
confidence: 99%
“…Преимущества бессвинцовых припоев на основе сплавов Cu−Sn для окружающей среды и здоровья человека, побудили исследователей изучить свойства и поведение системы Cu−Sn [1]. В электронной аппаратуре при пайке с использованием припоев Cu−Sn, наблюдается интенсивное образование интерметаллида Cu 6 Sn 5 за счет реакции между Cu и Sn [2][3][4]. При миниатюризации электронных устройств, доля интерметаллического слоя по сравнению с общей толщиной паяного соединения увеличивается.…”
Section: Introductionunclassified