In this dissertation, we address the problem of vagueness in traditional legal contracts by presenting novel methodologies that aid in the paradigm shift from traditional legal contracts to smart contracts. We discuss key enabling technologies that assist in converting the traditional natural language legal contract, which is full of vague words, phrases, and sentences to the blockchain-based precise smart contract, including metrics evaluation during our conversion experiment. To address the challenge of this contract-transformation process, we propose four novel proof-of-concept approaches that take vagueness and different possible interpretations into significant consideration, where we experiment with popular vendors' existing vague legal contracts. We show through experiments that our proposed methodologies are able to study the degree of vagueness in every interpretation and demonstrate which vendor's translated-smart contract can be more accurate, optimized, and have a lesser degree of vagueness. We also incorporated the method of fuzzy logic inside the blockchain-based smart contract, to successfully model the semantics of linguistic expressions. Our experiments and results show that the smart contract with the higher degrees of truth can be very complex technically but more accurate at the same time. By using fuzzy logic inside a smart contract, it becomes easier to solve the problem of contractual ambiguities as well as expedite the process of claiming compensation when implemented in a blockchain-based smart contract.