Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The initial development of inflow tracers was initially designed to provide qualitative information about identifying the location of water breakthrough in production wells. The proof of concept and application for water detection, initiated the development of oil tracers for oil inflow monitoring. Different approaches to install them permanently within a completion component were used, to provide risk free, reliable production monitoring without the need for intervention. Installing unique chemical tracers that are embedded in polymer materials in sand screens or pup joints, along select locations in the lower completion was to correlate where the oil and water is flowing along the production interval and how much. Innovation in the chemistry and materials designed to release to a target fluid (oil or water), enabled non electric wireless monitoring capabilities for many years of longevity in harsh well conditions, such as high temperature and highly acidic stimulation fluids. The evolution of inflow tracer signal interpretation, qualitative and quantitative interpretation workflows using models have also provided valuable insight to inflow characterisation. The latter can provide zonal rate information like wireline conveyed production logging tools, by inducing transients through shut in's or rate changes to create tracer signals that are transported by flow to surface and captured in sample bottles for laboratory analysis. A model based approach to match the measured signals with proprietary models through history matching workflow has also been developed. There are hundreds of well installations utilising inflow tracing monitoring technology today, where the majority have been in open hole completions in both sandstone and naturally fractured carbonate reservoirs on land, offshore environments in both platform and deep water sub-sea environments producing through long tie backs to FPSO's. The monitoring sensors are adaptable to most completion types in conventional and unconventional reservoirs. In most cases, inflow tracers can monitor clean-up efficiency, any subsequent restart and steady state production. Practical case studies will discuss the development of robust and reliable inflow tracer and technology and how operators have applied it over the past decade in a chronological order.
The initial development of inflow tracers was initially designed to provide qualitative information about identifying the location of water breakthrough in production wells. The proof of concept and application for water detection, initiated the development of oil tracers for oil inflow monitoring. Different approaches to install them permanently within a completion component were used, to provide risk free, reliable production monitoring without the need for intervention. Installing unique chemical tracers that are embedded in polymer materials in sand screens or pup joints, along select locations in the lower completion was to correlate where the oil and water is flowing along the production interval and how much. Innovation in the chemistry and materials designed to release to a target fluid (oil or water), enabled non electric wireless monitoring capabilities for many years of longevity in harsh well conditions, such as high temperature and highly acidic stimulation fluids. The evolution of inflow tracer signal interpretation, qualitative and quantitative interpretation workflows using models have also provided valuable insight to inflow characterisation. The latter can provide zonal rate information like wireline conveyed production logging tools, by inducing transients through shut in's or rate changes to create tracer signals that are transported by flow to surface and captured in sample bottles for laboratory analysis. A model based approach to match the measured signals with proprietary models through history matching workflow has also been developed. There are hundreds of well installations utilising inflow tracing monitoring technology today, where the majority have been in open hole completions in both sandstone and naturally fractured carbonate reservoirs on land, offshore environments in both platform and deep water sub-sea environments producing through long tie backs to FPSO's. The monitoring sensors are adaptable to most completion types in conventional and unconventional reservoirs. In most cases, inflow tracers can monitor clean-up efficiency, any subsequent restart and steady state production. Practical case studies will discuss the development of robust and reliable inflow tracer and technology and how operators have applied it over the past decade in a chronological order.
Despite the improved productivity and uplift in reserve recovery associated with horizontal wells, reservoir heterogeneity can cause uneven production, and early water and gas breakthrough from portions of the wellbore. Inflow control devices (ICD) create additional pressure drop to balance the production flux, but cannot restrict unwanted effluents once they break through. The Autonomous Inflow Control Device (AICD) actively delivers a variable flow restriction in response to the properties (viscosity) of the fluid flowing through it. Water or gas flowing through the device is restricted more than oil. When used in a horizontal well, segmented into multiple compartments, this design prevents excessive production of unwanted effluents after breakthrough occurs in one or more compartments. In the 2016 infill development campaign, production was improved by AICDs to ensure contribution from all reservoir sections, and limit gas and water production by postponing breakthrough and restricting unwanted effluent production after breakthrough. A nine well program was selected to demonstrate the effectiveness of AICD completions in the East Belumut and West Belumut assets, a field development offshore Malaysia. The wells are drilled with horizontal lengths typically 1.5km within the original 6-8m thin oil column for West Belumut and 10-14m thin oil column for East Belumut. The program comprised of AICD flow loop testing, performance modelling, candidate selection, completion design and comparing production results with neighbouring ICD wells in the fields. The implementation of an AICD completion was a success and full fields implementation took place in 2017. First installed in March 2016, the AICD completion was adopted as part of the standard lower completion solution at East Belumut. To date additional wells have been completed with AICD completions in East and West Belumut fields, demonstrating significant increase in cumulative oil production, reduction in GOR of the AICD wells by 50%, and achieving 50% more oil production compared to offset ICD wells. This paper describes a full field implementation for the application of AICDs in a super thin layer, oil reservoir offshore Malaysia. Nine new horizontal wells in two different fields were completed with AICDs to reduce the amount of water and gas production from these wells and to enhance the reserve recovery from the asset. The paper describes the workflow for establishing the suitability of candidates for the technology, the completion design process, and the enhanced production results of the program after 2 years production.
Reservoirs containing complex structures require additional technology to obtain optimum performance from planned production wells. In this scenario, logging-while-drilling (LWD) technologies play an important role in well construction from purely geometric trajectories to the real-time trajectory steering and formation and fluid characteristics measurements. A North Sea Alvheim field case study is presented in this paper. During the exploration and initial development phase of the field, the oil/water contact (OWC) varied to 7 m due to the presence of mudstone baffles and faults. The field has been on production since 2008 using bottom-aquifer drive, and current fluid contacts have shifted from their initial levels. To enhance field recoverable reserves, an infill development plan was required to place the wells within a thin oil rim between the gas/oil contact (GOC) and the OWC. Field objectives included achieving optimal well landing, identifying the moveable oil in situ, mapping the hydrocarbon-bearing reservoir, and identifying the hydrocarbon type (oil or gas) along the wellbore trajectory. To address the challenges, an integrated drilling bottomhole assembly (BHA) consisting of a deep-directional resistivity (DDR) tool to refine the reservoir delineation and structural positioning, a downhole fluid analyzer (DFA) using optical spectrometry to identify in-situ fluids, and advanced petrophysical measurements provided a complete quantitative reservoir evaluation during well construction. This paper presents the design, execution, and interpretation of the acquisition program to achieve the well objectives, including positioning the producer well in the desired moveable fluid zone. The final results demonstrated that integrating LWD measurements in the operation added significant value toward achieving the desired wellbore trajectory by optimally positioning the wellbore in the desired reservoir fluid layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.