Immunotherapy, the modern oncological treatment with immune checkpoint inhibitors (ICIs), has been part of the clinical practice for malignant melanoma for more than a decade. Anti-cytotoxic T-lymphocyte antigen 4 (CTLA4), anti-programmed cell death Protein 1 (PD-1), or anti programmed death-ligand 1 (PD-L1) agents are currently part of the therapeutic arsenal of metastatic or relapsed disease in numerous cancers; more recently, they have also been evaluated and validated as consolidation therapy in the advanced local stage. The combination with radiotherapy, a treatment historically considered loco-regional, changes the paradigm, offering—via synergistic effects—the potential to increase immune-mediated tumor destruction. However, the fragile balance between the tumoricidal effects through immune mechanisms and the immunosuppression induced by radiotherapy means that, in the absence of ICI, the immune-mediated potentiation effect of radiotherapy at a distance from the site of administration is rare. Through analysis of the preclinical and clinical data, especially the evidence from the PACIFIC clinical trial, we can consider that hypofractionated irradiation and reduction of the irradiated volume, in order to protect the immune-infiltrated tumor microenvironment, performed concurrently with the immunotherapy or a maximum of 2 weeks before the start of ICI treatment, could bring maximum benefits. In addition, avoiding radiation-induced lymphopenia (RILD) by protecting some anatomical lymphoid structures or large blood vessels, as well as the use of irradiation of partial tumor volumes, even in plurimetastatic disease, for the conversion of a "cold" immunological tumor into a “hot” immunological tumor are modern concepts of radiotherapy in the era of immunotherapy. Low-dose radiotherapy could also be proposed in plurimetastatic cases, the effect being different (modeling of the TME) from that of high doses per fraction irradiation (cell death with release of antigens that facilitates immune-mediated cell death).