2023
DOI: 10.1007/s10661-022-10813-2
|View full text |Cite
|
Sign up to set email alerts
|

Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 85 publications
0
1
0
1
Order By: Relevance
“…Within the domain of research methodologies, both domestic and international pursuits primarily deploy sophisticated frameworks, such as the geo-accumulation index, single-item pollution index, potential ecological risk index, Nemeiro comprehensive pollution index, and the enrichment factor method. These tools serve as instrumental means to evaluate the intricate landscape of heavy metal pollution within the soil [16,17]. Each of these methodologies possesses inherent advantages and drawbacks in its utilization.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Within the domain of research methodologies, both domestic and international pursuits primarily deploy sophisticated frameworks, such as the geo-accumulation index, single-item pollution index, potential ecological risk index, Nemeiro comprehensive pollution index, and the enrichment factor method. These tools serve as instrumental means to evaluate the intricate landscape of heavy metal pollution within the soil [16,17]. Each of these methodologies possesses inherent advantages and drawbacks in its utilization.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Información sobre distribución espacial y las posibles fuentes de contaminación por metales pesados en tierras agrícolas es muy importante para la salud humana y la seguridad alimentaria. Debido a eso, Günal et al (2023) evaluaron el grado de contaminación por plomo (Pb), cadmio (Cd) y níquel (Ni) en la parte sureste de Turquía, mediante el índice de geoacumulación (Igeo), el factor de contaminación modificado (mCdeg) y el índice de contaminación de Nemerow (PINemerow), los cuales fueron combinados con autocorrelación espacial utilizando algoritmos de aprendizaje profundo.…”
Section: Sistemas De Inteligencia Artificial Para La Agriculturaunclassified