Abstract:Self-Supervised Learning (SSL) models have been successfully applied in various deep learning-based speech tasks, particularly those with a limited amount of data. However, the quality of SSL representations depends highly on the relatedness between the SSL training domain(s) and the target data domain. On the contrary, spectral feature (SF) extractors such as log Mel-filterbanks are hand-crafted non-learnable components, and could be more robust to domain shifts. The present work examines the assumption that … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.