As one of the most effective NOx emission removing technologies to meet the Tier III limitation by International Maritime Organization, urea-selective catalytic reduction (SCR) technology is starting to be used in two-stroke marine diesel engines. Based on the two-cycle catalytic mechanism proposed by Topsoe, in combination with the exhaust characteristics of the marine diesel, expansion studies on detailed SCR reaction model were carried out in this paper. According to the temperature dependence of reaction pathway, SCR reaction model was divided into three parts: low temperature reaction pathway, standard SCR reaction pathway, and high temperature oxidation pathways, and an expanded NH3-NO/NO2-SCR reaction model for V2O5 catalyst was proposed in the paper. In order to verify the accuracy of the expanded SCR reaction model, simulating and testing studies of SCR reaction under marine diesel conditions were carried out with a commercial extruded V2O5/TiO2 catalyst. The simulation values are agreed well with experimental values at 150–500 ℃, and kinetics characteristics of SCR reaction process under V2O5/TiO2 catalyst can be predicted accurately with the expanded NH3-NO/NO2-SCR reaction model.