Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we develop the fixed-borrowing adaptive design, a Bayesian adaptive design which facilitates information borrowing from a historical trial using subject-level control data while assuring a reasonable upper bound on the maximum type I error rate and lower bound on the minimum power. First, one constructs an informative power prior from the historical data to be used for design and analysis of the new trial. At an interim analysis opportunity, one evaluates the degree of prior-data conflict. If there is too much conflict between the new trial data and the historical control data, the prior information is discarded and the study proceeds to the final analysis opportunity at which time a noninformative prior is used for analysis. Otherwise, the trial is stopped early and the informative power prior is used for analysis. Simulation studies are used to calibrate the early stopping rule. The proposed design methodology seamlessly accommodates covariates in the statistical model, which the authors argue is necessary to justify borrowing information from historical controls. Implementation of the proposed methodology is straightforward for many common data models, including linear regression models, generalized linear regression models, and proportional hazards models. We demonstrate the methodology to design a cardiovascular outcomes trial for a hypothetical new therapy for treatment of type 2 diabetes mellitus and borrow information from the SAVOR trial, one of the earliest cardiovascular outcomes trials designed to assess cardiovascular risk in antidiabetic therapies.
In this paper, we develop the fixed-borrowing adaptive design, a Bayesian adaptive design which facilitates information borrowing from a historical trial using subject-level control data while assuring a reasonable upper bound on the maximum type I error rate and lower bound on the minimum power. First, one constructs an informative power prior from the historical data to be used for design and analysis of the new trial. At an interim analysis opportunity, one evaluates the degree of prior-data conflict. If there is too much conflict between the new trial data and the historical control data, the prior information is discarded and the study proceeds to the final analysis opportunity at which time a noninformative prior is used for analysis. Otherwise, the trial is stopped early and the informative power prior is used for analysis. Simulation studies are used to calibrate the early stopping rule. The proposed design methodology seamlessly accommodates covariates in the statistical model, which the authors argue is necessary to justify borrowing information from historical controls. Implementation of the proposed methodology is straightforward for many common data models, including linear regression models, generalized linear regression models, and proportional hazards models. We demonstrate the methodology to design a cardiovascular outcomes trial for a hypothetical new therapy for treatment of type 2 diabetes mellitus and borrow information from the SAVOR trial, one of the earliest cardiovascular outcomes trials designed to assess cardiovascular risk in antidiabetic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.