The ClC family of transmembrane proteins
functions throughout nature
to control the transport of Cl– ions across biological
membranes. ClC-ec1 from Escherichia coli is an antiporter,
coupling the transport of Cl– and H+ ions
in opposite directions and driven by the concentration gradients of
the ions. Despite keen interest in this protein, the molecular mechanism
of the Cl–/H+ coupling has not been fully
elucidated. Here, we have used multiscale simulation to help identify
the essential mechanism of the Cl–/H+ coupling. We find that the highest barrier for proton transport
(PT) from the intra- to extracellular solution is attributable to
a chemical reaction, the deprotonation of glutamic acid 148 (E148).
This barrier is significantly reduced by the binding of Cl– in the “central” site (Cl–cen), which displaces E148 and thereby facilitates its deprotonation.
Conversely, in the absence of Cl–cen E148
favors the “down” conformation, which results in a much
higher cumulative rotation and deprotonation barrier that effectively
blocks PT to the extracellular solution. Thus, the rotation of E148
plays a critical role in defining the Cl–/H+ coupling. As a control, we have also simulated PT in the
ClC-ec1 E148A mutant to further understand the role of this residue.
Replacement with a non-protonatable residue greatly increases the
free energy barrier for PT from E203 to the extracellular solution,
explaining the experimental result that PT in E148A is blocked whether
or not Cl–cen is present. The results
presented here suggest both how a chemical reaction can control the
rate of PT and also how it can provide a mechanism for a coupling
of the two ion transport processes.