The combined effect of pressure and temperature on hydrophobic hydration of a nonpolar methanelike solute is investigated by extensive simulations in the TIP4P model of water. Using test-particle insertion techniques, free energies of hydration under a range of pressures from 1 to 3000 atm are computed at eight temperatures ranging from 278.15 to 368.15 K. Corresponding enthalpy, entropy, and heat capacity accompanying the hydration process are estimated from the temperature dependence of the free energies. Partial molar and excess volumes calculated using pressure derivatives of the simulated free energies are consistent with those determined by direct volume simulations; but direct volume determination offers more reliable estimates for compressibility. At 298.15 K, partial molar and excess isothermal compressibilities of methane are negative at 1 atm. Partial molar and excess adiabatic (isentropic) compressibilities are estimated to be also negative under the same conditions. But partial molar and excess isothermal compressibilities are positive at high pressures, with a crossover from negative to positive compressibility at approximately 100-1000 atm. This trend is consistent with experiments on aliphatic amino acids and pressure-unfolded states of proteins. For the range of pressures simulated, hydration heat capacity exhibits little pressure dependence, also in apparent agreement with experiment. When pressure is raised at constant room temperature, hydration free energy increases while its entropic component remains essentially constant. Thus, the increasing unfavorability of hydration under raised pressure is seen as largely an enthalpic effect. Ramifications of the findings of the authors for biopolymer conformational transitions are discussed.