Abstract:In order to render this paper minimally self-sufficient, we review and specialize the main structure of the isomathematics to nuclear constituents as extended and deformable charge distributions under linear and non-linear, local and non-local and Hamiltonian as well non-Hamiltonian interactions; we then review and specialize for the nuclear structure the main laws of the isotopic branch of hadronic mechanics known as isomechanics; we review and specialize the method for turning quantum mechanical nuclear models for point-like nucleons into covering isomechanical models for extended and deformable constituents under the most general known realization of strong interactions; we then review and specialize to nuclear structures the consequential notion of isoparticles; we then review the ensuing, first known, numerically exact and time invariant representation of the magnetic moments of stable nuclides; we then review the structure of the neutron as a bound state according to isomechanics of an isoproton and an isoelectron; and we finally review the ensuing three-body structure of the Deuteron. Via the use of the preceding advances. We then present, apparently for the first time, a numerically exact and time invariant representation of the spin of stable nuclides, firstly, via their approximation as isotopic bound states of isodeuterons, isoneutron and isoprotons, and secondly, via their reduction to isobound states of isoprotons and isoelectrons. Some observations on the nuclear configurations so obtained have also been presented in the case of the first model and in view of the second option we have identified in isoelectrons the nuclear glue which tightly holds isonucleons of stable nuclide in the atomic nucleus in the preferred orientation of their intrinsic spins. In Appendix A, we provide a technical review specialized for the first time to nuclear physics of the Lie-Santilli theory and its main application to the notion of isoparticles as isoirreducible isounitary isorepresentations of the Lorentz-Poincaré-Santilli isosymmetry.