The main formalisms of partial level densities (PLD) used in preequilibrium nuclear reaction models, based on the equidistant spacing model (ESM), are considered. A collection of FORTRAN77 functions for PLD calculation by using 14 formalisms for the related partial-state densities is provided and 28 sample cases (73 versions) are described. The results are given in graphic form too. Composite (recommended) formulas, which include the optional use of various corrections, i.e. the advanced pairing and shell correction in addition to the Pauli effect, and average energy-dependent single-particle level densities for the excited particles and holes, are also given. The formalism comprises the density of particle-hole bound states, and the effects of an exact correction for the Pauli-exclusion principle are considered. Distribution format: ASCII Keywords: Partial nuclear level density, nuclear level density, single-particle level density, equidistant-spacing model, preequilibrium emission, nuclear reactions Nature of physical problem: This Fortran code is a collection of subroutines for calculation of the partial nuclear level densities (PLD) mainly used in preequilibrium nuclear reaction models, by using 14 formalisms for the related partial state densities (PSD).
PACS
Method of solution:The main approaches to the calculation of the partial state density, based on the equidistant spacing model (ESM), are used. Composite (recommended) formulas including optionally various corrections, i.e. the advanced pairing and shell correction in addition to the Pauli effect, and average energy-dependent single-particle level (s.p.l.) densities for the excited particles and holes, are also involved. The density of the particle-hole bound states is moreover comprised, and the effects of an exact correction for the Pauli-exclusion principle are considered.Restrictions on the complexity of the problem: Although the quantum-mechanical s.p.l. density and the continuum effect can also be reproduced by a corresponding Fermi-gas formula, to be used accordingly within the average energy-dependent PSD in multistep reaction models, this effect is not included. The calculation of PLD with linear momentum, of first interest for modelling preequilibrium-emission angular distributions, is not available either.
Typical running time:The execution time is strongly problem-dependent: it is roughly proportional to both the number of the excitation energies and the exciton configurations considered in the calculation, while consistent differences arise when various PSD formalisms are used. Twenty-eight sample cases with 73 versions which require from 0.1 to 1661 s on a PC Pentium/166MHz are provided.
Unusual features of the program:The PSD functions have been optimized for their independent use, in order to provide tools for PSD/PLD users (see [5]). The related drawback is the increase in execution time, while a proper use would involve the calculation of some coefficients only once in the main program. Second, the PLD.FOR has been organized s...