The JEM-EUSO program aims to study ultra-high energy cosmic rays from space. To achieve this goal, it has realized a series of experiments installed on the ground (EUSO-TA), various on stratospheric balloons (with the most recent one EUSO-SPB2), and inside the International Space Station (Mini-EUSO), in light of future missions such as K-EUSO and POEMMA. At nighttime, these instruments aim to monitor the Earth’s atmosphere measuring fluorescence and Cherenkov light produced by extensive air showers generated both by very high-energy cosmic rays from outside the atmosphere and by neutrino decays. As the two light components differ in duration (order of microseconds for fluorescence light and a few nanoseconds for Cherenkov light) they each require specialized sensors and acquisition electronics. So far, the sensors used for the fluorescence camera are the Multi-Anode Photomultiplier Tubes (MAPMTs), while for the Cherenkov one, new systems based on Silicon PhotoMultipliers (SiPMs) have been developed. In this contribution, a brief review of the experiments is followed by a discussion of the tests performed on the optical sensors. Particular attention is paid to the development, test, and calibration conducted on SiPMs, also in view to optimize the geometry, mass, and weight in light of the installation of mass-critical applications such as balloon- and space-borne instrumentation.