2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA) 2013
DOI: 10.1109/ic3ina.2013.6819181
|View full text |Cite
|
Sign up to set email alerts
|

Commodity price prediction using neural network case study: Crude palm oil price

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 8 publications
0
4
0
2
Order By: Relevance
“…Hal ini dimaksudkan agar produksi dapat sesuai dengan target dan mencegah kerugian dari biaya produksi dan mendukung manajemen dalam pengambilan keputusan (Meryana, 2017). Untuk memudahkan perencanaan produksi di masa depan, proses estimasi produksi harus didasarkan pada data produksi pada tahun-tahun sebelumnya (Gunawan, Khodra, & Harlili, 2013;Haviluddin & Alfred, 2014;Haviluddin & Jawahir, 2015;Kanchymalay, Sallehuddin, Salim, & Hashim, 2017).…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Hal ini dimaksudkan agar produksi dapat sesuai dengan target dan mencegah kerugian dari biaya produksi dan mendukung manajemen dalam pengambilan keputusan (Meryana, 2017). Untuk memudahkan perencanaan produksi di masa depan, proses estimasi produksi harus didasarkan pada data produksi pada tahun-tahun sebelumnya (Gunawan, Khodra, & Harlili, 2013;Haviluddin & Alfred, 2014;Haviluddin & Jawahir, 2015;Kanchymalay, Sallehuddin, Salim, & Hashim, 2017).…”
Section: Pendahuluanunclassified
“…Sehingga beberapa peneliti menerapkan metode kecerdasan buatan untuk meningkatkan hasil akurasi prediksi mengingat kinerja algoritma yang bersifat cerdas karena ada tahapan pembelajaran (Haviluddin & Dengen, 2017;Mislan, Gaffar, Haviluddin, & Puspitasari, 2018). Peneliti (Gunawan et al, 2013) menerapkan metode neural network yaitu joint network dan separated network untuk memprediksi minyak kelapa sawit Indonesia. Hasil penelitian menunjukkan bahwa metode neural network telah menghasilkan akurasi yang baik dalam memprediksi minyak kelapa sawit.…”
Section: Pendahuluanunclassified
“…∆ = − +1 (10) If ∆ > 0 then future will be loss and current feature will be linked with +1 by binary string ‗0', else future will be profit and current feature will be linked with +1 by binary string ‗1' , as discussed in figure 2. For all the three time series data are first scaled between 0 and 1 using equation (11).…”
Section: Algorithm Lbnf (Price N N)mentioning
confidence: 99%
“…Now a day's main focus of all researchers is to solve the problem of fluctuating crude oil prices with high accuracy. For oil price prediction, numerous machine learning methods were proposed such as artificial neural networks (ANN) [3][4][5][6][7][8][9][10][11][12][13][14], and support vector machine (SVM) [15][16][17][18]. These are nonlinear models which may produce more accurate predictions if the oil price data are strongly nonlinear [19].…”
Section: Introductionmentioning
confidence: 99%
“…They found that the neural network model is a better performing one in the above context. Gunawan et al [6] devised a neural network predicting method for Indonesian Palm Oil. They concluded that by increasing the number of iterations, it could increase accuracy but it comes at the cost of computational overheads.…”
Section: Introductionmentioning
confidence: 99%