Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A distinct ulcerative dermatitis known as “freshwater skin disease” is an emerging clinical and pathological presentation in coastal cetaceans worldwide. In Australia, two remarkably similar mortality events enabled the creation of a case definition based on pathology and environmental factors. The first affected a community of endemic Tursiops australis in the Gippsland Lakes, Victoria, while the second occurred among T. aduncus resident in the Swan-Canning River system, Western Australia. The common features of both events were (1) an abrupt and marked decrease in salinity (from > 30ppt to < 5ppt) due to rainfall in the catchments, with hypo-salinity persisting weeks to months, and (2) dermatitis characterized grossly by patchy skin pallor that progressed to variable circular or targetoid, often raised, and centrally ulcerated lesions covering up to 70% of the body surface. The affected skin was often colonized by a variety of fungal, bacterial and algal species that imparted variable yellow, green or orange discoloration. Histologic lesions consisted of epidermal hydropic change leading to vesiculation and erosion; alternately, or in addition, the formation of intra-epithelial pustules resulting in ulceration and hypodermal necrosis. Thus, the environmental factors and characteristic pathologic lesions, are necessary components of the case definition for freshwater skin disease.
A distinct ulcerative dermatitis known as “freshwater skin disease” is an emerging clinical and pathological presentation in coastal cetaceans worldwide. In Australia, two remarkably similar mortality events enabled the creation of a case definition based on pathology and environmental factors. The first affected a community of endemic Tursiops australis in the Gippsland Lakes, Victoria, while the second occurred among T. aduncus resident in the Swan-Canning River system, Western Australia. The common features of both events were (1) an abrupt and marked decrease in salinity (from > 30ppt to < 5ppt) due to rainfall in the catchments, with hypo-salinity persisting weeks to months, and (2) dermatitis characterized grossly by patchy skin pallor that progressed to variable circular or targetoid, often raised, and centrally ulcerated lesions covering up to 70% of the body surface. The affected skin was often colonized by a variety of fungal, bacterial and algal species that imparted variable yellow, green or orange discoloration. Histologic lesions consisted of epidermal hydropic change leading to vesiculation and erosion; alternately, or in addition, the formation of intra-epithelial pustules resulting in ulceration and hypodermal necrosis. Thus, the environmental factors and characteristic pathologic lesions, are necessary components of the case definition for freshwater skin disease.
Common bottlenose dolphins, Tursiops truncatus, can suffer health complications from prolonged freshwater exposure; however, little is known about how dolphins behaviorally respond to flood events. We investigated whether dolphins mitigated their freshwater exposure by moving south towards the estuary mouth and/or towards deeper areas with higher salinities in response to a record-breaking flood in Pensacola Bay, Florida. In total, 144 dolphin groups observed during 45 population dynamic surveys were analyzed across two flood-impacted sampling sessions and their respective seasonal control sessions. Kernel density estimates demonstrated southern movement towards the estuary mouth during flood-impacted sessions, but this distribution change was limited. Species distribution models showed that dolphins did not move to deeper areas after the flood and dolphin distribution was not substantially altered by flood-induced salinity changes. The estuary system exhibits strongly stratified waters with broad salinity ranges even during the flood. Dolphins may have mitigated the severity of freshwater exposure by capitalizing on these stratified areas as they continued to use habitat affected by the flood. A lack of avoidance of low salinity could result in this dolphin population being at greater risk for health problems, which should be considered in future population management and conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.