It was recently proposed that gut bacteria are required for the insecticidal activity of the Bacillus thuringiensis-based insecticide, DiPel, toward the lepidopterans Manduca sexta, Pieris rapae, Vanessa cardui, and Lymantria dispar. Using a similar methodology, it was found that gut bacteria were not required for the toxicity of DiPel or Cry1Ac or for the synergism of an otherwise sublethal concentration of Cry1Ac toward M. sexta. The toxicities of DiPel and of B. thuringiensis HD73 Cry ؊ spore/Cry1Ac synergism were attenuated by continuously exposing larvae to antibiotics before bioassays. Attenuation could be eliminated by exposing larvae to antibiotics only during the first instar without altering larval sterility. Prior antibiotic exposure did not attenuate Cry1Ac toxicity. The presence of enterococci in larval guts slowed mortality resulting from DiPel exposure and halved Cry1Ac toxicity but had little effect on B. thuringiensis HD73 Cry ؊ spore/Cry1Ac synergism. B. thuringiensis Cry ؊ cells killed larvae after intrahemocoelic inoculation of M. sexta, Galleria mellonella, and Spodoptera litura and grew rapidly in plasma from M. sexta, S. litura, and Tenebrio molitor. These findings suggest that gut bacteria are not required for B. thuringiensis insecticidal activity toward M. sexta but that B. thuringiensis lethality is reduced in larvae that are continuously exposed to antibiotics before bioassay.Bacillus thuringiensis has long been regarded as a bona fide entomopathogen that can produce an array of virulence factors including insecticidal parasporal crystal (Cry) toxins, vegetative insecticidal proteins, phospholipases, immune inhibitors, and antibiotics (31). B. thuringiensis establishes lethal infections in many insect species after intrahemocoelic inoculation (9,10,14,26,31), and the insecticidal activity of Cry toxins, which lyse the intestinal epithelium, can be synergized by the presence of viable B. thuringiensis spores (31). In each instance, synergism has been attributed to hemocoelic infection by B. thuringiensis.A novel hypothesis (6, 7) proposed that B. thuringiensis is incapable of killing Lymantria dispar, Manduca sexta, Pieris rapae, or Vanessa cardui in the absence of gut bacteria. Prior exposure of L. dispar larvae to a combination of four antibiotics severely reduced the subsequent toxicity of the B. thuringiensis-based (spores and Cry toxins) bioinsecticide, DiPel (Valent BioSciences) (6). Both larval susceptibility to B. thuringiensis and the number of culturable gut bacteria were found to be negatively correlated with the concentration of antibiotics to which larvae were previously exposed. Furthermore, a total reduction in larval susceptibility was coincident with the elimination of any detectable gut bacteria. Experimental reinfection with Enterobacter sp. strain NAB3, found in the guts of some populations of L. dispar larvae, was found to rescue the toxicity of B. thuringiensis, whereas reinfection with Enterococcus casseliflavus and Staphylococcus xylosus did not. It was also sho...