Gastrointestinal cancer is one of the leading causes of cancerrelated mortality in men and women worldwide. The adult stem cell marker LGR5 (leucine-rich repeat-containing, G proteincoupled receptor 5) is highly expressed in a significant fraction of gastrointestinal tumors of the colon, liver, pancreas, and stomach, relative to normal tissues. LGR5 is located on the cell surface and undergoes rapid, constitutive internalization independent of ligand. Furthermore, LGR5-high cancer cells have been shown to exhibit the properties of tumor-initiating cells or cancer stem cells (CSC). On the basis of these attributes, we generated two LGR5-targeting antibody-drug conjugates (ADC) by tethering the tubulin-inhibiting cytotoxic drug monomethyl auristatin E to a highly specific anti-LGR5 mAb via a protease cleavable or noncleavable chemical linker and compared them in receptor binding, cell internalization, and cytotoxic efficacy in cancer cells. Here, we show that both ADCs bind LGR5 with high specificity and equivalent nanomolar affinity and rapidly internalize to the lysosomes of LGR5-expressing gastrointestinal cancer cells. The anti-LGR5 ADCs effectively induced cytotoxicity in LGR5-high gastrointestinal cancer cells, but not in LGR5-negative or -knockdown cancer cell lines. Overall, we demonstrate that the cleavable ADC exhibited higher potency in vitro and was able to eradicate tumors and prevent recurrence in a xenograft model of colon cancer. These findings provide preclinical evidence for the potential of LGR5-targeting ADCs as effective new therapeutics for the treatment and eradication of gastrointestinal tumors and CSCs with high LGR5 expression. Mol Cancer Ther; 15(7); 1580-90. Ó2016 AACR.