Prior research has shown that manipulating stimulus energy by changing both stimulus contrast and variability results in confidence accuracy dissociations in humans. Specifically, even when performance is matched, higher stimulus energy leads to higher confidence. The most common explanation for this effect is the positive evidence heuristic where confidence neglects evidence that disconfirms the choice. However, an alternative explanation is the signal and variance increase hypothesis, according to which these dissociations arise from low level changes in the separation and variance of perceptual representations. Because artificial neural networks lack built in confidence heuristics, they can serve as a test for the necessity of confidence heuristics in explaining confidence accuracy dissociations. Therefore, we tested whether confidence accuracy dissociations induced by stimulus energy manipulations emerge naturally in convolutional neural networks (CNNs). We found that, across three different energy manipulations, CNNs produced confidence-accuracy dissociations similar to those found in humans. This effect was present for a range of CNN architectures from shallow 4-layer networks to very deep ones, such as VGG-19 and ResNet-50 pretrained on ImageNet. Further, we traced back the reason for the confidence-accuracy dissociations in all CNNs to the same signal-and-variance increase that has been proposed for humans: higher stimulus energy increased the separation and variance of the CNNs internal representations leading to higher confidence even for matched accuracy. These findings cast doubt on the necessity of the positive evidence heuristic to explain human confidence and establish CNNs as promising models for adjudicating between low-level, stimulus-driven and high-level, cognitive explanations of human behavior.