Usually, common pool games are analyzed without taking into account the cooperative features of the game, even when communication and non-binding agreements are involved. Whereas equilibria are inefficient, negotiations may induce some cooperation and may enhance efficiency. In the paper, we propose to use tools of cooperative game theory to advance the understanding of results in dilemma situations that allow for communication. By doing so, we present a short review of earlier experimental evidence given by Hackett, Schlager, and Walker 1994 (HSW) for the conditional stability of non-binding agreements established in face-to-face multilateral negotiations. For an experimental test, we reanalyze the HSW data set in a game-theoretical analysis of cooperative versions of social dilemma games. The results of cooperative game theory that are most important for the application are explained and interpreted with respect to their meaning for negotiation behavior. Then, theorems are discussed that cooperative social dilemma games are clear (alpha-and beta-values coincide) and that they are convex (it follows that the core is "large"): The main focus is on how arguments of power and fairness can be based on the structure of the game. A second item is how fairness and stability properties of a negotiated (non-binding) agreement can be judged. The use of cheap talk in evaluating experiments reveals that besides the relation of non-cooperative and cooperative solutions, say of equilibria and core, the relation of alpha-, beta-and gamma-values are of importance for the availability of attractive solutions and the stability of the such agreements. In the special case of the HSW scenario, the game shows properties favorable for stable and efficient solutions. Nevertheless, the realized agreements are less efficient than expected. The realized (and stable) agreements can be located between the equilibrium, the egalitarian solution and some fairness solutions. In order to represent the extent to which the subjects obey efficiency and fairness, we present and discuss patterns of the corresponding excess vectors.