Objective
Nuclear Factor One X (NFIX) is a transcription factor expressed by neural stem cells within the developing mouse brain and spinal cord. In order to characterise the pathways by which NFIX may regulate neural stem cell biology within the developing mouse spinal cord, we performed an microarray-based transcriptomic analysis of the spinal cord of embryonic day (E)14.5 Nfix−/− mice in comparison to wild-type controls.
Data description
Using microarray and differential gene expression analyses, we were able to identify differentially expressed genes in the spinal cords of E14.5 Nfix−/− mice compared to wild-type controls. We performed microarray-based sequencing on spinal cords from n = 3 E14.5 Nfix−/− mice and n = 3 E14.5 Nfix+/+ mice. Differential gene expression analysis, using a false discovery rate (FDR) p-value of p < 0.05, and a fold change cut-off for differential expression of > ± 1.5, revealed 1351 differentially regulated genes in the spinal cord of Nfix−/− mice. Of these, 828 were upregulated, and 523 were downregulated. This resource provides a tool to interrogate the role of this transcription factor in spinal cord development.