“…The following types of biomarkers have the potential to be clinically applicable in chronic pain management (Tracey et al, 2019;Van Der Miesen et al, 2019) A combination of these biomarkers is also a possible outcome for future research. Decreased alpha band power (5/18; diagnostic, predictive) (Sufianov et al, 2014;González-Roldán et al, 2016;Meneses et al, 2016;Lancaster et al, 2017;Ferdek et al, 2019) Decreased alpha band power (2/8; diagnostic) (Vachon-Presseau et al, 2016;Telkes et al, 2020) Increased theta band power (2/5; monitoring) (Graversen et al, 2012;Jensen et al, 2013) Alpha band activity (1/4; prognostic) (Vuckovic et al, 2018) Frontal delta power (1/3; predictive) (Yüksel et al, 2019) Decreased peak alpha Decreased beta band power (1/18; diagnostic, predictive) (Lancaster et al, 2017) Increased theta global network efficiency (1/8; monitoring) (Teixeira et al, 2021) Decreased SMR/theta power ratio with neuro-feedback therapy (1/18; monitoring) (Di Pietro et al, 2018) (Continued) Rockholt et al 10.3389/fnins.2023.1186418 Frontiers in Neuroscience 12 frontiersin.org application of SVM classifiers has led to an improvement in accuracy with up to 93.7% (Misra et al, 2017;Kragel et al, 2018;Levitt et al, 2020;Buchanan et al, 2021;Lendaro et al, 2021;Zolezzi et al, 2021;Teel et al, 2022;Topaz et al, 2022). With gradual improvements in the ML algorithms over the years, there is a trend of testing their applicability in clinical practice, especially for diagnostic, monitoring, and prognostic purposes in the context of chronic pain (Mendonça-de-Souza et al, 2012;Sufianov et al, 2014).…”