2015 23nd Signal Processing and Communications Applications Conference (SIU) 2015
DOI: 10.1109/siu.2015.7130135
|View full text |Cite
|
Sign up to set email alerts
|

Community detection in social networks using content and link analysis

Abstract: Özetçe-Son zamanlarda sosyal ağlarda topluluk tanıma önemli bir problem olarak çalışılmaktadır. Birçok yöntem topluluk tanıma problemini ağın bağlantı yapısını analiz ederek çözmektedir. Bu durumda elde edilen topluluklar ağın yalnızca topolojik özelliğini yansıtmaktadır. Ağdaki kişiler arasında paylaşılan dokümanlar gözardı edilmektedir. Bu çalışmada, literatürde sıklıkla kullanılan ve bir hiyerarşik kümeleme algoritması olan modülerlik eniyileme algoritması ağdaki kişiler arasındaki benzerlikleri temel alara… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 17 publications
0
3
0
Order By: Relevance
“…However, if a reviewer reviews a product soon after it is launched, then review will more likely be a spam. Therefore, we compute the total time ( ) between the product listing time and the review time using equation (4). As the frequency of review rating is a a boolean feature, so if a product is reviewed within three days, then we classify it as a spam.…”
Section: Features Engineeringmentioning
confidence: 99%
See 1 more Smart Citation
“…However, if a reviewer reviews a product soon after it is launched, then review will more likely be a spam. Therefore, we compute the total time ( ) between the product listing time and the review time using equation (4). As the frequency of review rating is a a boolean feature, so if a product is reviewed within three days, then we classify it as a spam.…”
Section: Features Engineeringmentioning
confidence: 99%
“…Spam can be categorized into numerous types [4,5], but the most common are email spam, SMS spam, web spam, and review spam. Mail spam is related to unwanted electronic messages [6,7].…”
Section: Introductionmentioning
confidence: 99%
“…Analysis of the ST (social topic) model, in which the FT and ST models are independent of LDA models [16]. Natarajan et al [17] used link community as the starting point to establish a link-content model that uses linkcontent as the semantic analysis object [18,19].…”
Section: Related Workmentioning
confidence: 99%