-The aim of the study was to test the hypothesis that patterns of cross-Eurasian longitudinal distribution of lotic mayflies are determined by species' ecological requirements and the presence of the West Siberian Lowland. In particular, the objective was to test whether this great lowland is an environmental barrier preventing longitudinal dispersal of the rheophilic (i.e., preferring fast-running highland waters), but not the potamophilic (i.e., preferring slow-current lowland waters) mayflies, as its entire territory contains no rapidly-flowing streams suitable for rheophilic species. This hypothesis was tested indirectly by comparison of altitudinal ranges of species characterised by different cross-Eurasian distribution patterns (mainly East Palaearctic and Transpalaearctic species distributed over the Asian part of Palaearctica and entire Palaearctica respectively). The material used for the analyses was collected in the centre of Eurasia, southwestern Siberia, Russia. The region covered both lowland and mountain territories. The studied biogeographical groups of mayflies have distinctly different altitudinal distribution: the Transpalaearctic species inhabit lowland watercourses only, while the East Palaearctic species inhabit the entire altitudinal range with most of the species preferring high elevations (on average 700 m a.s.l.). These results confirmed the stated hypothesis and showed that for most of the East Palaearctic (but not Transpalaearctic) species the West Siberian Lowland can be an environmental barrier preventing their westward dispersal and therefore precluding mixing of the East and West Palaearctic rheophilic faunas. However, possible alternative hypotheses cannot be ruled out, as altitudinal ranges of some of these species do not fall out of the elevation range of the West Siberian Lowland. Remarkably, the East Palaearctic species, which by definition have narrower distribution than the Transpalaearctic species, have broader altitudinal ranges than the Transpalaearctic species. This pattern is related to the altitudinal Rapoport effect recently detected for mayfly distribution over the river systems.