Given any minimal ring extension [Formula: see text] of finite fields, several families of examples are constructed of a finite local (commutative unital) ring [Formula: see text] which is not a field, with a (necessarily finite) inert (minimal ring) extension [Formula: see text] (so that [Formula: see text] is a separable [Formula: see text]-algebra), such that [Formula: see text] is not a Galois extension and the residue field of [Formula: see text] (respectively, [Formula: see text]) is [Formula: see text] (respectively, [Formula: see text]). These results refute an assertion of G. Ganske and McDonald stating that if [Formula: see text] are finite local rings such that [Formula: see text] is a separable [Formula: see text]-algebra, then [Formula: see text] is a Galois ring extension. We identify the homological error in the published proof of that assertion. Let [Formula: see text] be a finite special principal ideal ring (SPIR), but not a field, such that [Formula: see text] has index of nilpotency [Formula: see text] ([Formula: see text]). Impose the uniform distribution on the (finite) set of ([Formula: see text]-algebra) isomorphism classes of the minimal ring extensions of [Formula: see text]. If [Formula: see text] (for instance, if [Formula: see text]), the probability that a random isomorphism class consists of ramified extensions of [Formula: see text] is at least [Formula: see text]; if [Formula: see text] (for instance, if [Formula: see text] for some odd prime [Formula: see text]), the corresponding probability is at least [Formula: see text]. Additional applications, examples and historical remarks are given.