Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Trace theory (formulated by Mazurkiewicz in 1987) is a principled framework for defining equivalence relations for concurrent program runs based on a commutativity relation over the set of atomic steps taken by individual program threads. Its simplicity, elegance, and algorithmic efficiency makes it useful in many different contexts including program verification and testing. It is well-understood that the larger the equivalence classes are, the more benefits they would bring to the algorithms and applications that use them. In this paper, we study relaxations of trace equivalence with the goal of maintaining its algorithmic advantages. We first prove that the largest appropriate relaxation of trace equivalence, an equivalence relation that preserves the order of steps taken by each thread and what write operation each read operation observes, does not yield efficient algorithms. Specifically, we prove a linear space lower bound for the problem of checking, in a streaming setting, if two arbitrary steps of a concurrent program run are causally concurrent (i.e. they can be reordered in an equivalent run) or causally ordered (i.e. they always appear in the same order in all equivalent runs). The same problem can be decided in constant space for trace equivalence. Next, we propose a new commutativity-based notion of equivalence called grain equivalence that is strictly more relaxed than trace equivalence, and yet yields a constant space algorithm for the same problem. This notion of equivalence uses commutativity of grains , which are sequences of atomic steps, in addition to the standard commutativity from trace theory. We study the two distinct cases when the grains are contiguous subwords of the input program run and when they are not, formulate the precise definition of causal concurrency in each case, and show that they can be decided in constant space , despite being strict relaxations of the notion of causal concurrency based on trace equivalence.
Trace theory (formulated by Mazurkiewicz in 1987) is a principled framework for defining equivalence relations for concurrent program runs based on a commutativity relation over the set of atomic steps taken by individual program threads. Its simplicity, elegance, and algorithmic efficiency makes it useful in many different contexts including program verification and testing. It is well-understood that the larger the equivalence classes are, the more benefits they would bring to the algorithms and applications that use them. In this paper, we study relaxations of trace equivalence with the goal of maintaining its algorithmic advantages. We first prove that the largest appropriate relaxation of trace equivalence, an equivalence relation that preserves the order of steps taken by each thread and what write operation each read operation observes, does not yield efficient algorithms. Specifically, we prove a linear space lower bound for the problem of checking, in a streaming setting, if two arbitrary steps of a concurrent program run are causally concurrent (i.e. they can be reordered in an equivalent run) or causally ordered (i.e. they always appear in the same order in all equivalent runs). The same problem can be decided in constant space for trace equivalence. Next, we propose a new commutativity-based notion of equivalence called grain equivalence that is strictly more relaxed than trace equivalence, and yet yields a constant space algorithm for the same problem. This notion of equivalence uses commutativity of grains , which are sequences of atomic steps, in addition to the standard commutativity from trace theory. We study the two distinct cases when the grains are contiguous subwords of the input program run and when they are not, formulate the precise definition of causal concurrency in each case, and show that they can be decided in constant space , despite being strict relaxations of the notion of causal concurrency based on trace equivalence.
Commutativity has proven to be a powerful tool in reasoning about concurrent programs. Recent work has shown that a commutativity-based reduction of a program may admit simpler proofs than the program itself. The framework of lexicographical program reductions was introduced to formalize a broad class of reductions which accommodate sequential (thread-local) reasoning as well as synchronous programs. Approaches based on this framework, however, were fundamentally limited to program models with a fixed/bounded number of threads. In this paper, we show that it is possible to define an effective parametric family of program reductions that can be used to find simple proofs for parameterized programs , i.e., for programs with an unbounded number of threads. We show that reductions are indeed useful for the simplification of proofs for parameterized programs, in a sense that can be made precise: A reduction of a parameterized program may admit a proof which uses fewer or less sophisticated ghost variables . The reduction may therefore be within reach of an automated verification technique, even when the original parameterized program is not. As our first technical contribution, we introduce a notion of reductions for parameterized programs such that the reduction R of a parameterized program P is again a parameterized program (the thread template of R is obtained by source-to-source transformation of the thread template of P ). Consequently, existing techniques for the verification of parameterized programs can be directly applied to R instead of P . Our second technical contribution is that we define an appropriate family of pairwise preference orders which can be effectively used as a parameter to produce different lexicographical reductions. To determine whether this theoretical foundation amounts to a usable solution in practice, we have implemented the approach, based on a recently proposed framework for parameterized program verification. The results of our preliminary experiments on a representative set of examples are encouraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.