2021
DOI: 10.48550/arxiv.2105.05440
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Commutativity of Quantization and Reduction for Quiver Representations

Abstract: Given a finite quiver, its double may be viewed as its non-commutative "cotangent" space, and hence is a non-commutative symplectic space. Crawley-Boevey, Etingof and Ginzburg constructed the non-commutative reduction of this space while Schedler constructed its quantization. We show that the non-commutative quantization and reduction commute with each other. Via the quantum and classical trace maps, such a commutativity induces the commutativity of the quantization and reduction on the space of quiver represe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?