A Internet of Things (IoT) tem sido marcada pelas interações entre dispositivos que cooperam para realizar atividades. A partir deste ambiente cibernético e conectado, um possível paradigma derivado é o Social IoT (SIoT), onde múltiplos tipos de relacionamentos e confiabilidade podem ser estabelecidos entre dispositivos. Neste cenário, abordamos as questões de como modelar laços sociais em IoT e na proposição de modelos para, automaticamente, classificar e predizer relações em SIoT. Este artigo propõe a utilização de aprendizado por representação para classificar diferentes tipos de laços sociais em SIoT. Para isso, utiliza-se como estratégias para classificação Graph Neural Networks (GNN) ou Algoritmos Tradicionais de Classificação (ATC). Em nossos experimentos, GNN é rápido na etapa de treinamento e apresenta métricas F1-{macro, micro} de 0.61 e 0.88, respectivamente. Ao usar ATC, o treinamento é 121× até 11.235× mais lento que GNN, ao passo que as métricas F1-score alcançam 0.86 e 0.95, respetivamente.