Treatment of non-small-cell lung cancer (NSCLC) might take into account comorbidities as an important variable. The aim of this study was to generate a new simplified comorbidity score (SCS) and to determine whether or not it improves the possibility of predicting prognosis of NSCLC patients. A two-step methodology was used.Step 1: An SCS was developed and its prognostic value was compared with classical prognostic determinants in the outcome of 735 previously untreated NSCLC patients.Step 2: the SCS reliability as a prognostic determinant was tested in a different population of 136 prospectively accrued NSCLC patients with a formal comparison between SCS and the classical Charlson comorbidity index (CCI). Prognosis was analysed using both univariate and multivariate (Cox model) statistics. The SCS summarised the following variables: tobacco consumption, diabetes mellitus and renal insufficiency (respective weightings 7, 5 and 4), respiratory, neoplastic and cardiovascular comorbidities and alcoholism (weighting ¼ 1 for each item). In step 1, aside from classical variables such as age, stage of the disease and performance status, SCS was a statistically significant prognostic variable in univariate analyses. In the Cox model weight loss, stage grouping, performance status and SCS were independent determinants of a poor outcome. There was a trend towards statistical significance for age (P ¼ 0.08) and leucocytes count (P ¼ 0.06). In Step 2, both SCS and well-known prognostic variables were found as significant determinants in univariate analyses. There was a trend towards a negative prognostic effect for CCI. In multivariate analysis, stage grouping, performance status, histology, leucocytes, lymphocytes, lactate dehydrogenase, CYFRA 21-1 and SCS were independent determinants of a poor prognosis. CCI was removed from the Cox model. In conclusion, the SCS, constructed as an independent prognostic factor in a large NSCLC patient population, is validated in another prospective population and appears more informative than the CCI in predicting NSCLC patient outcome.