We consider the increase of the spatial variance of some inhomogeneous, nonequilibrium density (particles, energy, etc.) in a periodic quantum system of condensed-matter type. This is done for a certain class of initial quantum states which is supported by static linear response and typicality arguments. We directly relate the broadening to some current autocorrelation function at finite times. Our result is not limited to diffusive behavior, however, in that case it yields a generalized Einstein relation. These findings facilitate the approximation of diffusion constants/conductivities on the basis of current auto-correlation functions at finite times for finite systems. Pursuing this, we quantitatively confirm the magnetization diffusion constant in a spin chain which was recently found from non-equilibrium bath scenarios.