Here, an ultra‐compact Multi‐Input‐Multi‐Output (MIMO) antenna system is presented for Wireless Local Area Network (WLAN) applications. The proposed antenna compactness approach is based on using Cylindrical‐Dielectric‐Resonator‐Antenna (CDRA) symmetry with the help of image theory to achieve the best size reduction of the resonators and maintain the resonance frequency of the original CDRA. The electric/magnetic walls approach is utilized to miniaturize the size by exploring the symmetry and antisymmetry of the resonant mode. First, a CDRA for MIMO system is designed and tested in terms of return loss and radiation efficiency. Then, two configurations of MIMO‐Antennas (two and four ports) are examined by using the same substrate size. The 2‐port‐MIMO antenna is built from two half‐CDRs (HCDRs) facing each other. Similarly, four‐quarter‐CDRs (QCDRs) are created to form a 4‐port MIMO antenna system. As a result, a 75% size reduction is achieved (size of 30 × 30 × 7.62 mm3). The measured impedance bandwidth for the 4‐port MIMO antenna is 5.4% (5.4‐5.7 GHz), with more than 15 dB isolation levels. Proper levels of Envelope Correlation Coefficients (ECCs) are also achieved (1 × 10−2‐4 × 10−2), with a channel capacity loss (CCL) of 0.04 bits/S/Hz. The proposed MIMO antennas are suitable for compact wireless communication systems.