We present a novel approach to foveated imaging based on dual-aperture optics that superimpose two images on a single sensor, thus attaining a pronounced foveal function with reduced optical complexity. Each image captures the scene at a different magnification and therefore the system simultaneously captures a wide field of view and a high acuity at a central region. This approach enables arbitrary magnification ratios using a relatively simple system, which would be impossible using conventional optical design, and is of importance in applications where the cost per pixel is high. The acquired superimposed image can be processed to perform enhanced object tracking and recognition over a wider field of view and at an increased angular resolution for a given limited pixel count. Alternatively, image reconstruction can be used to separate the image components enabling the reconstruction of a foveated image for display. We demonstrate these concepts through ray-tracing simulation of practical optical systems with computational recovery.