SUMMARYNumerical function generators (NFGs) realize arithmetic functions, such as e x , sin(πx), and √ x, in hardware. They are used in applications where high-speed is essential, such as in digital signal or graphics applications. We introduce the edge-valued binary decision diagram (EVBDD) as a means of reducing the delay and memory requirements in NFGs. We also introduce a recursive segmentation algorithm, which divides the domain of the function to be realized into segments, where the given function is realized as a polynomial. This design reduces the size of the multiplier needed and thus reduces delay. It is also shown that an adder can be replaced by a set of 2-input AND gates, further reducing delay. We compare our results to NFGs designed with multi-terminal BDDs (MTBDDs). We show that EVBDDs yield a design that has, on the average, only 39% of the memory and 58% of the delay of NFGs designed using MTBDDs.