Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We introduce a new approach for constructing range proofs. Our approach is modular, and leads to highly competitive range proofs under standard assumption, using less communication and (much) less computation than the state of the art methods, without relying on a trusted setup. Our range proofs can be used as a drop-in replacement in a variety of protocols such as distributed ledgers, anonymous transaction systems, and many more, leading to significant reductions in communication and computation for these applications. At the heart of our result is a new method to transform any commitment over a finite field into a commitment scheme which allows to commit to and efficiently prove relations about bounded integers. Combining these new commitments with a classical approach for range proofs based on square decomposition, we obtain several new instantiations of a paradigm which was previously limited to RSA-based range proofs (with high communication and computation, and trusted setup). More specifically, we get:-Under the discrete logarithm assumption, we obtain the most compact and efficient range proof among all existing candidates (with or without trusted setup). Our proofs are 12% to 20% shorter than the state of the art Bulletproof (Bünz et al., IEEE S&P '18) for standard choices of range size and security parameter, and are more efficient (both for the prover and the verifier) by more than an order of magnitude. -Under the LWE assumption, we obtain range proofs that improve over the state of the art in a batch setting when at least a few dozen range proofs are required. -Eventually, under standard class group assumptions, we obtain the first concretely efficient standard integer commitment scheme (without bounds on the size of the committed integer) which does not assume trusted setup.
We introduce a new approach for constructing range proofs. Our approach is modular, and leads to highly competitive range proofs under standard assumption, using less communication and (much) less computation than the state of the art methods, without relying on a trusted setup. Our range proofs can be used as a drop-in replacement in a variety of protocols such as distributed ledgers, anonymous transaction systems, and many more, leading to significant reductions in communication and computation for these applications. At the heart of our result is a new method to transform any commitment over a finite field into a commitment scheme which allows to commit to and efficiently prove relations about bounded integers. Combining these new commitments with a classical approach for range proofs based on square decomposition, we obtain several new instantiations of a paradigm which was previously limited to RSA-based range proofs (with high communication and computation, and trusted setup). More specifically, we get:-Under the discrete logarithm assumption, we obtain the most compact and efficient range proof among all existing candidates (with or without trusted setup). Our proofs are 12% to 20% shorter than the state of the art Bulletproof (Bünz et al., IEEE S&P '18) for standard choices of range size and security parameter, and are more efficient (both for the prover and the verifier) by more than an order of magnitude. -Under the LWE assumption, we obtain range proofs that improve over the state of the art in a batch setting when at least a few dozen range proofs are required. -Eventually, under standard class group assumptions, we obtain the first concretely efficient standard integer commitment scheme (without bounds on the size of the committed integer) which does not assume trusted setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.