“…The idea for what follows next comes from a well‐known characterisation of compactness in Banach spaces due to Grothendiek, which is commonly referred to as the Grothendiek compactness principle: a closed subset
of a Banach space
is compact if and only if there is a sequence
such that
. The Grothendiek compactness principle will turn out to be useful in combination with the main result of [
9] (Theorem 4.3), which provides a characterisation of compactivorous sets in Banach spaces. We are especially interested in the second assertion of the theorem.…”