Comparative Analysis of CNN Architectures for SIBI Image Classification
Yulrio Brianorman,
Dewi Utami
Abstract:The classification of images from the Indonesian Sign Language System (SIBI) using VGG16, ResNet50, Inception, Xception, and MobileNetV2 Convolutional Neural Network (CNN) architectures is evaluated in this paper. With Google Colab Pro, a 224 × 224-pixel picture dataset was used for the study. A five-stage technique consisting of Dataset Collection, Dataset Preprocessing, Model Design, Model Training, and Model Testing was applied. Performance evaluation focused on accuracy, precision, recall, and F1-Score. Th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.