Diisononyl phthalate, classified as endocrine disruptor, has been investigate to trigger lipid biosynthesis in both mammalian and teleostean animal models. Despite this, little is known about the effects of DiNP exposure at tolerable daily intake level and the possible mechanisms of its toxicity. Probiotics, on the other hand, were demonstrated to have beneficial effects on the organism’s metabolism and recently emerged as a possible tool to mitigate the EDC toxicity. In the present study, using a metabolomic approach, the potential hepatic sex-related toxicity of DiNP was investigated in adult zebrafish together with the mitigating action of the probiotic formulation SLAB51, which has already demonstrated its ability to ameliorate gastrointestinal pathologies in animals including humans. Zebrafish were exposed for 28 days to 50 µg/kg body weight (bw)/day of DiNP (DiNP) through their diet and treated with 109 CFU/g bw of SLAB51 (P) and the combination of DiNP and SLAB51 (DiNP + P), and the results were compared to those of an untreated control group (C). DiNP reduced AMP, IMP, and GMP in the purine metabolism, while such alterations were not observed in the DiNP + P group, for which the phenotype overlapped that of C fish. In addition, in male, DiNP reduced UMP and CMP levels in the pyrimidine metabolism, while the co-administration of probiotic shifted the DiNP + P metabolic phenotype toward that of P male and closed to C male, suggesting the beneficial effects of probiotics also in male fish. Overall, these results provide the first evidence of the disruptive actions of DiNP on hepatic nucleotide metabolism and mitigating action of the probiotic to reduce a DiNP-induced response in a sex-related manner.