When dealing with plant roots, a multi-scale description of the functional root structure is needed. Since the beginning of XXI century, new devices like laser confocal microscopes have been accessible for coarse root structure measurements, including 3D reconstruction. Most re-searchers are familiar with using simple 2D geometry visualization that does not allow quantitatively determination of key morphological features from an organ-like perspective. We provide here a detailed description of the quantitative methods available for three-dimensional (3D) analysis of root features at single cell resolution, including root asymmetry, lateral root analysis, xylem and phloem structure, cell cycle kinetics, and chromatin determination. Quantitative maps of the distal and proximal root meristems are shown for different species, including Arabidopsis thaliana, Nicotiana tabacum and Medicago sativa. A 3D analysis of the primary root tip showed divergence in chromatin organization and cell volume distribution between cell types and precisely mapped root zonation for each cell file. Detailed protocols are also provided. Possible pitfalls in the usage of the marker lines are discussed. Therefore, researchers who need to improve their quantitative root biology portfolio can use them as a reference.