Mesoscale eddies are structures of seawater motion with horizontal scales of tens to hundreds of kilometers, impact depths of tens to hundreds of meters, and time scales of days to months. This study presents a statistical analysis of mesoscale eddies in the South China Sea (SCS) from 1993 to 2021 based on eddies extracted from satellite remote sensing data using the vector geometry eddy detection method. On average, about 230 eddies with a wide spatial and temporal distribution are observed each year, and the numbers of CEs (52.2%) and AEs (47.8%) are almost similar, with a significant correlation in spatial distribution. In this article, eddies with a lifetime of at least 28 days (17% of the number of total eddies) are referred to as strong eddies (SEs). The SEs in the SCS that persist for several years in similar months and locations, such as the well-known dipole eddies consisting of CEs and AEs offshore eastern Vietnam, are defined as persistent strong eddies (PSEs). SEs and PSEs affect the thermohaline structure, current field, and material and energy transport in the upper ocean. This paper is important as it names the SEs and PSEs, and the naming of eddies can facilitate research on specific major eddies and improve public understanding of mesoscale eddies as important oceanic phenomena.