This paper investigates the evolution of global eddies and various types of eddies originating from baroclinic instability (BCI) by utilizing satellite altimetry, Argo profiles, and climatology datasets. The structure of global eddies with regard to potential temperature anomalies experiences downward propagation and spreading from the periods of eddy growth to stabilization. However, from the eddy’s stabilization to the decay period, the process of spreading primarily occurs horizontally, and this process is usually accompanied by weakening. By comparing the evolution of eddies in three typical regions dominated by distinct types of BCI, we found that the basic properties of eddies related to different BCI types evolve similarly; however, there are notable differences in their vertical structures and evolution. Eddies associated with Phillips + Charney_s-type, Charney_s-type, and Eady-type BCIs exhibit dual-core, single-core, and dual-core structures, respectively. In particular, the intrusion of the Okhotsk cold water mass into the Northwest Pacific region forms cold-core anticyclonic eddies, resulting in AEs that are significantly distinct from the rest of the ocean. The evolution of surface-layer cores closely resembles that of the global eddies, while the decay of subsurface and bottom-layer cores is comparably sluggish. Additionally, we examine the impact of local oceanic stratification conditions on eddy decay and determine that stronger vertical gradients result in more vigorous eddy decay, accounting for the concentration of eddies at depths where vertical gradients are weaker during their evolution.