Comparative analysis of machine learning techniques in predicting dielectric behavior of ternary chalcogenide thin films
R A Mohamed,
H E Atyia
Abstract:The current research introduces a comparative analysis of the dielectric behavior exhibited by ternary chalcogenide thin films, including both experimental data and machine learning techniques. The study of temperature and frequency dependencies of dielectric parameters is crucial for assessing material losses, particularly focusing on the low-frequency range where dielectric dispersion occurs. The experimental results on the frequency (100–1000000 Hz)and the temperature(303 –393 K) influences on the dielectri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.