2018
DOI: 10.1007/978-3-030-02837-4_13
|View full text |Cite
|
Sign up to set email alerts
|

Comparative Analysis of MOGBHS with Other State-of-the-Art Algorithms for Multi-objective Optimization Problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2020
2020
2025
2025

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 21 publications
0
1
0
1
Order By: Relevance
“…Como apoyo al diseño de estrategias para la toma decisiones aparecen los algoritmos de aprendizaje automático o de maquina (machine learning) los cuales son parte de la inteligencia artificial [12,13]. Estos algoritmos permiten analizar grandes volúmenes de datos provenientes de ambientes big-data, con el propósito de definir modelos que permitan realizar predicciones.…”
Section: Introductionunclassified
“…Como apoyo al diseño de estrategias para la toma decisiones aparecen los algoritmos de aprendizaje automático o de maquina (machine learning) los cuales son parte de la inteligencia artificial [12,13]. Estos algoritmos permiten analizar grandes volúmenes de datos provenientes de ambientes big-data, con el propósito de definir modelos que permitan realizar predicciones.…”
Section: Introductionunclassified
“…MOGBHS was also compared to NSGA-II, MOEA/D, MSOPS and SPEA2 using 21 multi-objective test problems (12 with restrictions and 9 without restrictions) taken from the multiobjective competition during the 2009 IEEE-CEC conference [34]. In addition, MOGBHS provided superior Inverted Generational Distance with 95% significance using 10,000 and 20,000 evaluations of the objective (fitness) functions for the nonparametric tests of Friedman and Wilcoxon [35].…”
Section: Introductionmentioning
confidence: 99%