Research on prokaryotic epigenetics, the study of heritable changes in gene expression independent of sequence changes, led to the identification of DNA methylation as a versatile regulator of diverse cellular processes. Methylation of adenine bases is often linked to regulation of gene expression in bacteria, but cytosine methylation is also frequently observed. In this study, we present a complete overview of the cytosine methylome in
Burkholderia cenocepacia
, an opportunistic respiratory pathogen in cystic fibrosis patients. Single-molecule real-time (SMRT) sequencing was used to map all 4mC-modified cytosines, as analysis of the predicted MTases in the
B. cenocepacia
genome revealed the presence of a 4mC-specific phage MTase, M.BceJII, targeting GGCC sequences. Methylation motif GCGGCCGC was identified, and out of 6850 motifs detected across the genome, 2051 (29.9 %) were methylated at the fifth position. Whole-genome bisulfite sequencing (WGBS) was performed to map 5mC methylation and 1635 5mC-modified cytosines were identified in CpG motifs. A comparison of the genomic positions of the modified bases called by each method revealed no overlap, which confirmed the authenticity of the detected 4mC and 5mC methylation by SMRT sequencing and WGBS, respectively. Large inter-strain variation of the 4mC-methylated cytosines was observed when
B. cenocepacia
strains J2315 and K56-2 were compared, which suggests that GGCC methylation patterns in
B. cenocepacia
are strain-specific. It seems likely that 4mC methylation of GGCC is not involved in regulation of gene expression but rather is a remnant of bacteriophage invasion, in which methylation of the phage genome was crucial for protection against restriction-modification systems of
B. cenocepacia
.