Relevance. In sucker rod pump installations, the cost of the prime mover’s power use has substantial effect on the overall operational cost. Reduction in power consumption can lead to reduction in operating cost. Hence, as the sucker rod pump is dominant in the oil industry, any means which reduces the energy consumption can produce considerable economic benefit and help to meet the energy efficiency targets and standards. Due to the losses in the prime mover, surface transmission, and sucker rod string the power required to lift oil to the surface is always less than the power input to the prime mover. Induction motors, which are widely used as prime movers in sucker rod pump installations, operate at significantly lower efficiency and at a load lower than their rated capacity. Therefore, the demand for efficiency improvement is readily seen. This demand can be achieved by controlling motor losses through AC-DC-AC converter. The main aim of the research is to develop control strategy that helps to operate the sucker rod pump drive at optimal efficiency. Objects: electrical drive, sucker rod pump, oil producing well. Method: integrated simulation model consisting of the models of AC-DC-AC converter, induction motor including iron loss, sucker rod pump; vector control; generation of optimal magnetizing current trajectory for one cycle of pump operation. Result. The energy consumption of sucker rod pump unit for operation at rated flux and the one based on optimal magnetizing current trajectory were compared using an integrated simulation model. The simulation results indicate that about 1,6 % of the required energy can be saved when the sucker rod pump is operated based on the calculated optimal magnetizing current trajectory.