In this paper, we investigate the multi-channel cooperative spectrum sharing in hybrid satellite-terrestrial internet of things (IoT) networks with the auction mechanism, which is designed to reduce the operational expenditure of the satellitebased IoT (S-IoT) network while alleviating the spectrum scarcity issues of terrestrial-based IoT (T-IoT) network. The cluster heads of selected T-IoT networks assist the primary satellite users transmission through cooperative relaying techniques in exchange for spectrum access. We propose an auction-based optimization problem to maximize the sum transmission rate of all primary S-IoT receivers with the appropriate secondary network selection and corresponding radio resource allocation profile by the distributed implementation while meeting the minimum transmission rate of secondary receivers of each T-IoT network. Specifically, the one-shot Vickrey-Clarke-Groves (VCG) auction is introduced to obtain the maximum social welfare, where the winner determination problem is transformed into an assignment problem and solved by the Hungarian algorithm. To further reduce the primary satellite network decision complexity, the sequential Vickrey auction is implemented by sequential fashion until all channels are auctioned. Due to incentive compatibility with those two auction mechanisms, the secondary T-IoT cluster yields the true bids of each channel, where both the non-orthogonal multiple access (NOMA) and time division multiple access (TDMA) schemes are implemented in cooperative communication. Finally, simulation results validate the effectiveness and fairness of the proposed auction-based approach as well as the superiority of the NOMA scheme in secondary relays selection. Moreover, the influence of key factors on the performance of the proposed scheme is analyzed in detail.