Biological invasions represent a major threat to natural ecosystems. A primary source of invasive plants is ornamental horticulture, which selects traits related to invasiveness. This study evaluated the responses to water stress during germination and vegetative growth of six species used as ornamental or medicinal plants. Three of them are recognised as invasive weeds in many world areas. Seeds were exposed to increasing concentrations of polyethylene glycol (PEG) mimicking drought stress, and young plants in the vegetative growth stage were subjected to two levels of water stress. Results indicated that in the absence of stress in control conditions, the most competitive species were those reported as weeds, namely Bidens pilosa L., Oenothera biennis L., and Centaurea cyanus L., the last regarding germination velocity. Under stress, only two species, Limonium sinuatum (L.) Mill. and C. cyanus, maintained germination at –1 MPa osmotic potential, but in the recovery experiment, an osmopriming effect of PEG was observed. The most tolerant species during growth were two natives in the Mediterranean region, L. sinuatum and Lobularia maritima (L.) Desv., both accumulating the highest proline concentrations. The sixth species studied, Echinacea purpurea (L.) Moench., proved to be more susceptible to stress in the two developmental stages. This study reveals that the most significant traits associated with invasiveness were related to germination, especially in the absence of stress.