Comparative Analysis of YOLO Models for Bean Leaf Disease Detection in Natural Environments
Diana-Carmen Rodríguez-Lira,
Diana-Margarita Córdova-Esparza,
José M. Álvarez-Alvarado
et al.
Abstract:This study presents a comparative analysis of YOLO detection models for the accurate identification of bean leaf diseases caused by Coleoptera pests in natural environments. By using a manually collected dataset of healthy and infected bean leaves in natural conditions, we labeled at the leaf level and evaluated the performance of the YOLOv5, YOLOv8, YOLOv9, YOLOv10, and YOLOv11 models. Mean average precision (mAP) was used to assess the performance of the models. Among these, YOLOv9e exhibited the best perfor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.