The Eucalyptus plant releases allelopathic chemicals into the environment mostly through the essential oils volatilized from the leaves. This study discussed the composition of the leaf oils of few seven-year-old varieties like Eucalyptus pellita (E. pel), Eucalyptus camaldulensis (E. cama), Eucalyptus grandis (E. gra), Eucalyptus dunni (E. dun), Eucalyptus saligna (E. sal), and E. grandis × E. urophylla (E. gra×E. uro) and three-year-old E. grandis × E. urophylla (E. gra × E. uro (three)). It determined the allelopathic mechanism and the types of chemical components playing the leading role. Essential oil was obtained by hydrodistillation and analyzed by the Gas Chromatography-Mass Spectrometry (GC-MS) method. In order to determine the effect of allelopathy, seed germination experiments were carried out at different concentrations (10-100 mL/L) of the E. Gra × E. uro leaf oil (EO) and the major components. The wheat seeds germinated by adding 1,8-cineole were used to determine the activity of α-amylase. Moreover, the mRNA expression of α-amylase in seeds was studied. The major chemical class in the essential oil was oxygenated monoterpene; 1,8-cineole (20.2-67.5%) displayed the highest content. Other substances that were high in content and ubiquitous included α-pinene (0.3-21.8%), α-terpineol (0.44-19.24%), and borneol (0.81-3.05%). The four chemical constituents and EO influenced the germination and growth of the three plants. Among them, 1,8-cineole exhibited the strongest inhibitory effect. The α-amylase activity of the 1,8-cineole-treated wheat seeds had decreased significantly. Molecular evidence suggested that 1,8-cineole decreased the α-amylase gene (AMY) expression.