Objective: Together with novel photodetector technologies and emerging electronic front-end designs, scintillator material research is one of the key aspects to obtain ultra-fast timing in time-of-flight positron emission tomography (TOF-PET). In the late 1990s, Cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) has been established as the state-of-the-art PET scintillator due to its fast decay time, high light yield and high stopping power. It has been shown that co-doping with divalent ions, such as Ca2+ and Mg2+, is beneficial for its scintillation characteristics and timing performance. Therefore, this work aims to identify a fast scintillation material to combine it with novel photosensor technologies to push the state of the art in TOF-PET. Approach: This study evaluates commercially available LYSO:Ce,Ca and LYSO:Ce,Mg samples manufactured by Taiwan Applied Crystal Co., LTD. regarding their rise and decay times as well as their coincidence time resolution (CTR) with both ultra-fast high-frequency (HF) readout and commercially available readout electronics, i.e., the TOFPET2 ASIC. Main results: The co-doped samples exhibit state-of-the-art rise times of on average 60 ps and effective decay times of on average 35 ns. Using the latest technological improvements made on NUV-MT SiPMs by Fondazione Bruno Kessler and Broadcom Inc., a 3x3x19mm3 LYSO:Ce,Ca crystal achieves a CTR of 95 ps (FWHM) with ultra-fast HF readout and 157 ps (FWHM) with the system-applicable TOFPET2 ASIC. Evaluating the timing limits of the scintillation material, we even show a CTR of 56 ps (FWHM) for small 2x2x3mm3 pixels. A complete overview of the timing performance obtained with different coatings (Teflon, BaSO4) and different crystal sizes coupled to standard Broadcom AFBR-S4N33C013 SiPMs will be presented and discussed. Significance: This work thoroughly evaluates commercially available co-doped LYSO:Ce crystals and, in combination with novel NUV-MT SiPMs, shows a TOF performance that significantly exceeds the current state of the art.